Hamilton cycle decompositions of k-uniform k-partite hypergraphs

نویسندگان

  • Jaromy Kuhl
  • Michael W. Schroeder
چکیده

Let m ≥ 2 and k ≥ 2 be integers. We show that K k×m has a decomposition into Hamilton cycles of Kierstead-Katona type if k | m. We also show that K (3) 3×m − T has a decomposition into Hamilton cycles where T is a 1-factor if and only if 3 m and m = 4. We introduce a notion of symmetry and comment on the existence of symmetric Hamilton cycle decompositions of K (k) k×m.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamilton decompositions of complete 3-uniform hypergraphs

A k−uniform hypergraphH is a pair (V, ε), where V = {v1, v2, . . . , vn} is a set of n vertices and ε is a family of k-subset of V called hyperedges. A cycle of length l of H is a sequence of the form (v1, e1, v2, e2, . . . , vl, el, v1), where v1, v2, . . . , vl are distinct vertices, and e1, e2, . . . , el are k-edges of H and vi, vi+1 ∈ ei, 1 ≤ i ≤ l, where addition on the subscripts is modu...

متن کامل

The Complexity of the Hamilton Cycle Problem in Hypergraphs of High Minimum Codegree

We consider the complexity of the Hamilton cycle decision problem when restricted to k-uniform hypergraphs H of high minimum codegree δ(H). We show that for tight Hamilton cycles this problem is NP-hard even when restricted to k-uniform hypergraphsH with δ(H) ≥ n2−C, where n is the order of H and C is a constant which depends only on k. This answers a question raised by Karpiński, Ruciński and ...

متن کامل

Matchings and Tilings in Hypergraphs

We consider two extremal problems in hypergraphs. First, given k ≥ 3 and k-partite k-uniform hypergraphs, as a generalization of graph (k = 2) matchings, we determine the partite minimum codegree threshold for matchings with at most one vertex left in each part, thereby answering a problem asked by Rödl and Ruciński. We further improve the partite minimum codegree conditions to sum of all k par...

متن کامل

Hamilton cycles in quasirandom hypergraphs

We show that, for a natural notion of quasirandomness in k-uniform hypergraphs, any quasirandom k-uniform hypergraph on n vertices with constant edge density and minimum vertex degree Ω(nk−1) contains a loose Hamilton cycle. We also give a construction to show that a k-uniform hypergraph satisfying these conditions need not contain a Hamilton `-cycle if k − ` divides k. The remaining values of ...

متن کامل

Decompositions of complete uniform hypergraphs into Hamilton Berge cycles

In 1973 Bermond, Germa, Heydemann and Sotteau conjectured that if n divides ( n k ) , then the complete k-uniform hypergraph on n vertices has a decomposition into Hamilton Berge cycles. Here a Berge cycle consists of an alternating sequence v1, e1, v2, . . . , vn, en of distinct vertices vi and distinct edges ei so that each ei contains vi and vi+1. So the divisibility condition is clearly nec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2013